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Abstract. The field-induced carrier redistribution between the subbands of a semiconductor superlattice
is treated using the density matrix approach. The unit cell of the superlattice consists of one quantum
well with three occupied subbands. Carrier scattering on polar-optical phonons is described within the
microscopic bulk phonon model. At the tunneling resonance, an intrinsic population inversion is observed.
The temperature dependence of the population inversion is determined.

PACS. 73.40.Gk Tunneling – 73.50.Fq High-field and nonlinear effects

1 Introduction

The study of interminiband effects in superlattices (SLs)
is a topic of continued interest since the invention of quan-
tum cascade lasers (QCLs) [1]. These devices consist of a
SL, the unit cell of which contains typically up to 20 lay-
ers. This has to be contrasted with the original work by
Kazarinov and Suris [2], who proposed an implementa-
tion of unipolar mid-infrared lasers based on a SL with a
unit cell consisting of a single well and barrier. The recent
demonstration of a staircase laser [3] goes in the direc-
tion of the original proposal to simplify the design con-
cept by reducing the number of quantum wells within the
SL unit cell considerably. Almost all other QCLs consist
of complex multilayer structures characterized by a peri-
odic alternation of carrier injectors and active regions, in
which the infrared radiation is generated. The search for
simple mid-infrared laser structures offers the advantage
to study basic physical properties of the field-induced car-
rier repopulation on an analytically tractable model with
a simple SL cell.

Unfortunately, most theoretical approaches, which
used numerical Monte Carlo simulations [4–7] or approx-
imate rate equations [8–12], focused on the simulation of
the existing complex devices, but did not search for sim-
ple laser designs based on a multisubband SL. Only re-
cently, such a study has been initiated on the basis of the
density-matrix approach [13,14]. In these papers, based
on the tight-binding model, a SL with three subbands has
been considered. Treating tunneling via the off-diagonal
elements of the density matrix and scattering-induced car-
rier transitions within the constant relaxation-time ap-
proximation, the field dependence of the carrier redistri-
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bution between the subbands has been calculated. It has
been found that, at the tunneling resonance, a global in-
trinsic population inversion may occur, which can be used
to fabricate injectorless QCLs based on SLs with a simple
unit cell. Unfortunately, our previous approach [13,14] has
the disadvantage that scattering was treated in the simple
constant relaxation-time approximation. Such an approx-
imation introduces many scattering time parameters and
allows the treatment of the temperature dependence only
in a phenomenological manner. This disadvantage will be
partly removed in the present paper by treating scatter-
ing in a more realistic fashion starting from a microscopic
model. This allows a study of the temperature dependence
of the field-induced carrier redistribution in more detail.

2 Basic theory

The biased multiband SL is described by a tight-binding
Hamiltonian, in which the coupling between nearest neigh-
bour wells creates minibands, whose widths are denoted
by ∆ν . We will focus on a SL with three subbands
(ν = 1, 2, 3) as can be realized by only a few layers within
the SL unit cell. In the limit of low carrier densities (when
the Boltzmann statistics approximately applies), the ele-
ments fν′

ν of the density matrix are solutions of the kinetic
equations{
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with E denoting the electric field. In our previous ap-
proach [13,14], the intra- and inter-subband scattering
probabilities Wµ′ν′

µν (k′, k) have been treated within the
phenomenological relaxation-time approximation. It is the
aim of the present approach to overcome this limitation.
The microscopic description of scattering provides more
reliable data concerning the field-induced carrier redistri-
bution and, therefore, enhances the predictive capacity of
our approach. The subband energy dispersion relations of
the considered model are assumed to have the simple form
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�
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⊥
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2
(1 − cos kzd) , (2)
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2
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(4)

where only one effective mass m∗ is used to characterize
the lateral carrier motion. εg1 and εg2 are the energy gaps
between the subbands 1, 2 and 2, 3, respectively. The el-
ements of the dipole matrix

Qµµ′(k) =
∑
K

χµ′(k + K)∇kz χ∗
µ(k + K) (5)

couple the subbands to each other via the off-diagonal el-
ements of the density matrix. Qµµ′(k) is calculated from
the SL envelope functions χµ(k + K), with K being a
vector of the reciprocal lattice. On the right hand side of
equation (1), various components of the scattering prob-
ability appear, which are associated with intra- and in-
tersubband carrier transitions. We will treat scattering
on polar-optical bulk phonons. The simple bulk phonon
model has not been chosen for an accurate description
of real systems. Rather, it is our intent here to use a
sufficiently simple model for analytical considerations to
demonstrate qualitative features in the field-induced car-
rier redistribution. We will focus on an explicit description
of scattering probabilities that describe hopping like tran-
sitions in the Wannier-Stark picture. In Appendix A, ex-
pressions for these terms are presented in a form, which al-
lows a detailed analysis of intracollisional field effects [15]
and the associated electro-phonon resonances [16]. As
these quantum effects are certainly unimportant for the
laser operation, we will neglect the field dependence of
the scattering in our numerical work.

The solution of the kinetic equation (1) is searched for
in the regime of strong electric fields, when resonant tun-
neling between adjacent wells can occur. In this regime,
we switch to the Wannier-Stark (WS) representation and
retain the most dominant intracell contributions of the
density matrix. This approximation is justified under the
condition that the states are sufficiently localized so that
the inequality Ωτeff > 1 is satisfied (Ω = eEd/� is the
Bloch frequency and τeff an effective scattering time). Fur-
thermore, we focus on the tunneling resonance by includ-
ing only resonant contributions in the calculation of the
off-diagonal elements fν′

ν (with ν �= ν′). These steps of

our approach have been described in more detail in ref-
erence [14]. The WS ladder representation of the density
matrix is obtained by a Fourier transformation

fν′
ν (k) =

∞∑
l=−∞

eilkzdfν′
ν (k⊥, l). (6)

This equation expresses the periodicity of the solu-
tion fν′

ν (k) along the field direction kz. The kinetic equa-
tion (1) is treated in this representation. To account for
tunneling appropriately, the quantity

f̃ν′
ν (k) = q̃νν′(k)fν′

ν (k), (7)

together with the abbreviations
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are introduced. The resulting set of equations for the el-
ements of the density matrix have already been derived
and solved in reference [14] within the relaxation-time ap-
proximation. As scattering plays an essential role, both
for the field-induced carrier redistribution and the carrier
transport, it is necessary to treat scattering in a more re-
alistic approach. This is the main objective of the present
paper.

In our approach, tunneling is described by the off-
diagonal elements fν′

ν of the density matrix, which are
introduced into the set of kinetic equations via the dipole
matrix and specific scattering contributions. The dipole
matrix elements constitute coherent tunneling through the
SL barriers including resonant tunneling without intro-
ducing any characteristic tunneling time. Alternatively,
these effects could be described by the exact eigenstates
of the diagonalized interaction free Hamiltonian. On the
contrary, the scattering-induced off-diagonal elements give
rise to completely other effects like dissipation and lifetime
broadening of the tunneling resonance. A semiclassical de-
scription of this broadening is justified as quantum contri-
butions to these transitions, as, e.g., electro-phonon reso-
nances, do not play any role in the stationary regime [5].
To facilitate our analytic approach, we describe the broad-
ening of the tunneling resonance by a phenomenological
scattering time parameter τ . Let us treat the tunneling
resonance between the first and third subband when the
component f̃1

3 is dominant. A closed equation for this off-
diagonal element of the density matrix can be derived. In
this equation, the scattering-mediated broadening of the
tunneling resonance is described by the scattering prob-
ability W 11

33 . Applying the relaxation-time approximation
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to this specific scattering mechanism, we obtain the ana-
lytical result

f̃1
3 (k⊥, l) ≈ eE

�

q13(l)
lΩ − ω31 − i/τ

× [f3
3 (k⊥, 0) − f1

1 (k⊥, 0)
]
, (10)

which is valid at high electric fields (Ωτeff > 1), where the
intrawell components fν′

ν (k⊥, l = 0) are most important.
The solution (10) is expressed by the transformed dipole
matrix element

qνν′(l) =
∑
kz

e−ilkzdQνν′(kz)q̃νν′(kz). (11)

In the next step of our calculation, the occupation num-
bers nν =

∑
k⊥ fν

ν (k⊥, l = 0) have to be determined
from the diagonal elements of the density matrix. To cal-
culate the field-mediated carrier redistribution, we focus
on scattering on polar-optical phonons described by the
Fröhlich-type Hamiltonian, in which the coupling matrix
elements γν′ν have to be specified. In spite of screening
(or dynamical screening) this is not a trivial task for the
multiple subband SL, even when the bulk-phonon model
is accepted for an approximate description. We think that
a realistic treatment of the smooth wavenumber depen-
dence of the screened coupling constants is not neces-
sary to describe the main features of the QCL structure.
This impression is confirmed by experimental studies of
intersubband magnetophonon resonances in QCL struc-
tures [17,18], which demonstrate that the laser operation
depends sensitively on a possible detuning of the electron
– longitudinal optical phonon scattering channel and not
on the details of the scattering matrix elements. Therefore,
in our more qualitative analysis, the wavenumber depen-
dence of the coupling constants is neglected. In addition,
in the applied one-electron picture valid in the limit of
low carrier concentrations, the Coulomb interaction is not
taken into account. Using the expressions for the scat-
tering probabilities from Appendix A and neglecting in-
tracollisional field effects, we obtain after a tedious but
straightforward calculation the set of linear equations

A(n1 − n3) = −a1n1 + a2n2 + a3n3, (12)
b1n1 − b2n2 + b3n3 = 0, (13)

n1 + n2 + n3 = 1, (14)

in which resonant tunneling is described by the quantity

A =
2�

m∗a2ω2
0τ

(
Q13

d

)2

(1 − e−β)

×
∞∑

l=−∞

Φ2
l ([∆3 − ∆1]/[2�Ω])

(lΩτ − ε31τ/�)2 + 1
· (15)

Here, we introduced the frequency of polar-optical
phonons ω0, the temperature parameter β = �ω0/kBT ,
and the lateral lattice constant a. The character of the

Fig. 1. Carrier occupation n1 (solid line), n2 (thick solid line),
and n3 (dashed line) as a function of the electric field for T =
77 K. The position of the tunneling resonance is marked by a
vertical line. The following model parameters have been used
in the calculation: ∆1 = 1 meV, ∆2 = 2 meV, ∆3 = 4 meV,
εg1 = 25 meV, εg2 = 35 meV, τ = 0.5 ps, and d = 10 nm. The
SL unit cell is assumed to be symmetric (Q13(l = 0) = 0). We
used Q13(l = 1) = 0.2 nm.

function Φ(x) depends on whether the SL unit cell is sym-
metric or not. We obtain

Φl(x) =


Jl(x), if Q13(l = 0) �= 0

Jl−1(x) − Jl+1(x), if

{
Q13(l = 0) = 0

Q13(l = ±1) �= 0

,

(16)

where Jl(x) denotes the Bessel function. The field-depen-
dent coefficients in the final equations (12) and (13) are
given in Appendix B.

3 Results

The set of linear equations (12) to (14), with coefficients
defined in Appendix B, is numerically solved for a SL with
a symmetric unit cell [Q13(l = 0) = 0 but Q13(l = 1) �= 0].
In the calculations, GaAs bulk parameters are used for
the effective mass m∗, the lattice constant a, and the fre-
quency ω0 of polar-optical phonons. Due to the more qual-
itative character of our approach, we cannot predict an
effective device design based on a given heterostructure.
This would require the numerical consideration of more
realistic models with no free parameters as initiated by
Iotti and Rossi [5].

Figure 1 shows the subband occupation nν as a func-
tion of the electric field for T = 77 K. We focus on the
tunneling resonance at eEd = ε31 marked by a vertical
line in Figure 1. At this resonance, there is a remarkable
carrier redistribution between the subbands. A population
inversion is observed between the lowest and the second
subband. This inversion is due to resonant tunneling de-
scribed by the term on the left hand side of equation (12).
If this tunneling contribution is absent (Q13 → 0), an in-
trinsic population inversion cannot occur. The emergence
of an intrinsic population inversion is also hampered by
scattering-mediated broadening. With increasing lifetime
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Fig. 2. Carrier occupation nν of the SL subbands as a function
of the electric field for T = 30 K. All other parameters are the
same as in Figure 1.

broadening described by the parameter τ , the tunneling
resonance becomes smeared out, which eventually pre-
vents the occurrence of an inversion. This happens only
in the case when the ad-hoc broadening parameter τ of
the tunneling resonance becomes much smaller than all
other inter- and intrasubband scattering times. Neverthe-
less, the width of the tunneling resonance is an important
parameter of the QCL design, which should be treated in
more detail in future work. In the considered temperature
regime, the tunneling contribution given by the factor A
on the left hand side of equation (12) is practically inde-
pendent of temperature. The temperature dependence of
the population inversion results from scattering-mediated
intra- and intersubband transitions described by the coef-
ficients ai and bi in equations (12) and (13), respectively.
Explicit expressions for these quantities are presented in
Appendix B. Figure 2 shows the field dependence of the
carrier occupation for T = 30 K (all other parameters are
the same as in Fig. 1). As expected, the tunneling res-
onance becomes much more pronounced, when the tem-
perature decreases. In addition, the electric field region,
where an intrinsic population inversion occurs, enlarges
considerably with decreasing temperature and covers an
appreciable interval ranging from about 50 to 80 kV/cm.
The qualitative behaviour of the field-induced carrier re-
distribution at the tunneling resonance agrees with our
former results derived within the constant relaxation-time
approximation [13,14]. However, to obtain more detailed
information about the tunneling resonance and its temper-
ature dependence, a realistic treatment of inelastic scat-
tering is necessary. This allows the determination of the
temperature-dependent electric field region, where the in-
version occurs. In addition, one can answer the question,
whether an inversion may appear at room temperature,
too.

4 Summary

The field-induced carrier redistribution in multiband SLs
has been studied on the basis of the density matrix ap-
proach. A SL with three occupied subbands has been
treated within a tight-binding model. The applied electric
field is strong enough to establish a tunneling resonance

between the first and third subband. Contrary to previous
approaches [13,14], which relied on the relaxation-time ap-
proximation, scattering on polar-optical phonons has been
described within a more realistic model. At the tunneling
resonance eEd = ε31, an intrinsic population inversion is
observed, which may be used for the implementation of
injectorless QCLs. The character of the population inver-
sion depends both on the details of resonant tunneling and
the scattering-induced carrier transitions. Our scattering
model allows a detailed study of the temperature depen-
dent width and height of the tunneling resonance, which
gives rise to a population inversion. Moreover, it is possi-
ble to derive conditions for the appearance of an inversion
at room temperature.

In our approach, there are still some phenomenologi-
cal parameters such as the constant dipole matrix element
Q13 and the scattering time τ for tunneling transitions.
More progress is expected from a rigorous microscopic ap-
proach with no adjustable parameters.

The authors acknowledge partial financial support by the
Deutsches Zentrum für Luft- und Raumfahrt.

Appendix A

In principle, our approach allows a detailed analysis of the
field-induced carrier redistribution. The main ingredient of
such a full microscopic treatment represents the scattering
probability. For further studies, the relevant contributions
are given here in its most general form. The intrasubband
scattering probabilities of the SL are expressed by

W νν
νν (k′, k) = 2Re
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where γνν′ denote intra- and intersubband coupling con-
stants of the electron-phonon interaction. The parameter s
goes to zero after the integral over the time variable t has
been carried out. The scattering probabilities depend on
the electric field (intra-collisional field effects). In equa-
tion (17), Nq denotes the Bose distribution function of
bulk phonons. The relevant intersubband components of
the scattering probability are given by

W ν′ν
ν′ν (k′, k) = 2Re

∑
q

ω2
q | γν′ν(k, q) |2
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0

dte−st

× exp

 i
�

t∫
0

dτ

[
εν′(k + q − eE

�
τ) − εν(k − eE

�
τ)
]

× δk′,k+q−eEt/�[(Nq + 1)e−iωqt + Nqeiωqt]. (18)

The treatment of the field-induced carrier redistribution
in Section 2 is based on a quasi-classical picture, in which
intra-collisional field effects are not taken into account.

Appendix B

The final equations (12) and (13) are derived by a Fourier
transformation of the kinetic equations according to equa-
tion (6) and by carrying out the remaining k⊥ inte-
grals. When the momentum dependence of the coupling
terms γνν′ is neglected, the k⊥ integrals can be replaced
by integrals over an energy variable ε = �

2k2
⊥/2m∗. We

obtain for the coefficients in equations (12) and (13)
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and the step function Θ have been introduced.
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